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&%y Some Stories....
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Isn’t software maintenance free? It was free at the university research
programs!

- Program Office Manager

But we are just cloning the last mission so flight software budget is
basically ZERO, right! (Oh and all the instruments/sensors have been
changed)

- A Different Program Office Manager




Why explore alternative modeling methods?

Strategic Investment Division Jet Propulsion Laborator

* For most of our history the cost community has relied
upon regression based modeling methods

* Sometimes regression breaks down

* Regression methods have the underlying assumption
of clean and complete data with large sample sizes

* Guess what - Most cost data suffers from sparseness,
noise, and small sample sizes

* The pointis we need more tools in our toolKkit




o Formal Analogy and Bayesian Models are a Natural Next Step in the

mma Evolution Cost Modeling and Analysis
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Evolution of Model Based Estimation Methods
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@® What We Learned from Methodology
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* There are a variety of models whose performance are hard to
distinguish (given currently available data) but some models are
better than others

e If one has sufficient data to run a parametric model such as
COCOMO then the best model has repeatedly been found to ne the
parametric model

* When insufficient information exists then a model using only
system parameters can be used to estimate software costs with
‘acceptable’ reduction in accuracy. The main weakness is the
possibility of occasional very large estimation errors which the
parametric model does not exhibit.

* A major strength of the nearest neighbor and clustering methods is
the ability to work with a combination of symbolic and numerical
data

* While a nearest neighbor model performs as well or better as
clustering based on MMRE, clustering handles outliers better and
provides a structured model that supports cost analysis and not
just prediction




2 “ASCoT” Key Analysis Components
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Regression
Cluster Analysis Knn Analysis Analysis
e Clustering e Nearest e Linear e Verified
e Development Neighbor Regression Reproduction
Effort e Development e Development e Cost/Effort
Estimate Effort and Cost Estimate

SLOC Estimate

* Cluster & Regression Analysis components listed rely on high level Mission
Descriptors such as # of Instruments and Mission Type

e COCOMO llis a reproduction and uses traditional inputs

7 jpl.nasa.gov



We Are Estimating With minimum Inputs

NASA
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Cluster and KNN algorithms use
* Spacecraft Type

 Destination
e Number of Instruments
* Number of Deployables

» Software Inheritance Categories
* Mission Size ($) Categories

Regression Model uses
* Spacecraft Development Costs
* Number of Instruments




® Improved Input Parameters
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e QOriginal Mission-Type parameter combined type of Mission Type with Destination

Mission Type Values Description Example
A Robotic spacecraft that orbits or it's target body. Also includes
Orbiter flyby spacecraft. Agua, New Horizons

Observatories are space based telescopes that support space
based astronomy across a wide set of frequencies. They can be

Observatory earth trailing or at the various LaGrange points created by the Kepler
gravity fields of the earth, sun and moon.
A robotic spacecraft that does its science in-situ or from the

Lander surface of a solar system body. It does not move from its original |Phoenix
location.
A robotic spacecraft that does its science in-situ or from the
surface of a solar system body and has the ability to move on the

Rover . MSL
surface. To date all rovers have wheels but in the future they may
crawl, walk or hop.

Destination Values Description Example

Earth Missions that are in an Earth orbit. oco
Missions that target planets within the asteroid belt. Also includes

Inner Planetary missions that are Heliocentric, Earth leading or trailing, at the Maven

Earth-Sun-Moon LaGrange points, and lunar mission.

Missions that target asteroids or comets. As these may typically
Asteroid/Comet require more complex, or different, trajectories than inner Dawn
planetary missions.

Outer Planetary missions are missions that travel beyond the
QOuter Planetary asteroid belt. JUNO




@ Data Summary — Key Metrics
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 Total of 51 missions with data

— 47 can be used in at least 1 of the estimation models

e Missions by Destination

Earth — 23
Asteroids/Comets — 7
Inner Planets— 17
Outer Planets — 4
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;;;# Data Summary — Key Metrics
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« Effort, Lines of Code and Productivity by Destination

Destination # of Records Effort (Months) Logical Delievered LOC
Median S.D. Median S.D.
Astreroids/Comet 7 546 373 143,000 35,189
Earth 23 499 466 62,000 39,986
Inner 17 664 435 122,000 133,765
Quter 4 620 411 54,000 21,633

* Number of Deployable and Instruments by Destination

Destination Instrument Deployable
Median Range Median Range
Astreroids/Comet 3 2-5 1 0-3
Earth 3 1-10 2 0-8
Inner 4 3-10 2 0-10
Outer 10 7-12 3 0-8
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* Conducted extensive analysis to verify this was indeed the
best method
— Spectral Clustering
— K-Means
— Hierarchical Clustering

— PCA- Principle Components

* The methods were examined for
— cluster membership stability
— minimum within-cluster range

— Effort estimation error based on leave-one-out MRE
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a&®¢ Comparing Model Performance
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* To compare models we use MRE metrics from leave one out validation

 COCOMO II out of the box performs well against parametric and non-
parametric models

* Even performs well against local calibration

* Ifyou have enough information run a parametric model !

I | Estimation Model
12 COCOMO2 f |
— COCONUT f Median | 25" -
— PEEKER f
10 MED_MISSION / MRE Pe_rlcent Percenti
08 Knnl 32% 14% 80%
g 06 (Nearest Neighbor)
< PEEKING2 32% 16% 97%
04 (Spectral
Clustering)
02 COCOMO2 36% 22% 55%
o Mission  Type | 38% | 14% | 106%
00 = . — - - Summary Table
1 2 3 4 5 6 7T 8 9 1 11 12 13 4 15 16 17 18 19
Records COCONUT 44% 32% 62%

Negative results for software effort Estimation, Empirical Software Engineering, Nov 2016
Menzies, Yang, Mathew, Boehm, Hihn
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@¥ Model MRE Performance
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Model Estimation Error, based on MRE, is steadily improving

MRE Comparison Based on Test Cases

ASCoT
Test Case MRE Prototype ASCoT Beta ASCoT
0, 0, 0,
= et O
—— Ascot Prototype
3 3% 3% 7%
2 - = 4 4% 10% 8%
o 5 4% 22% 15%
y o | 3 6 35% 23% 27%
= - = 7 45% 29% 32%
g 8 79% 35% 35%
g — 9 101% 37% 37%
10 102% 51% 51%
- 11 192% 54% 54%
S | | | | | | 12 506% 175% 107%
2 4 6 8 10 12 Median
- MRE 40% 26% 30%
Average
MRE 89% 37% 32%
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Comparison of Methods (7 Clusters, K=2)
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Variable Encoding

Variable Encoding
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By gradually increasing the granularity of our clusters, while maintaining
robustness to avoid overfitting, we were able to find logical separation
between groupings of missions

Rovers Rovers
Large Large Large Outer
S p—
Large Outer Outer Planetary
Large | Outer Planetar Planetar
Outer \_Planetary J 8
_ Planetary Planetary 1
— " ( Earth& ) Earth &
Missions M Earh g ) Inner Inner Earth &
~ — | Planetar Planetar e
N Inner ~ Y y Planetar
. . \M/\[ Earth ]_[ Earth
Increasing granularity >
Number
of 2 3 4 5 6 7
Clusters

STOP
BEFORE
OVER
FITTING
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NASA

Cluster Parameter Summary

Strategic Investment Division

Jet Propulsion Laborator

MissionXost MissionXost Softwarel ., MissionRl fIightlIomputerIJ Number@®f2| Number@fa Development?) Development]
Cluster . . Destination Work@Months Work@onths
Median@ Rangel Inheritance Type Redundancy | Instruments [Deployabes .
Median Range
1 $321M $170MEE500M High-VeryHigh Earth Orbiter Single®tring 1o Otol@ 492 230®oB70
) Earth@dnnerk Dual@tringB@
$824M S420MBEE1,250M Medium&o@igh | Planets Orbter Coldibackup PIE (oL 2RoB 603 340&0F 90
3 Asteroid/Cometsi Orbiter/@| DualBtringQR
$292M $220MEBS550M Medium &Anner®Planets Flyby Coldibackup 2RoF (0]E (o E:] 525 450@0EL040
4 Inner@®lanet DualBtringBR
$548M S630MEE820M High-Very@High (Mars) Lander Warmbbackup 4o 2@oB 728 630020
Planets
5 &3 Orbiter/@| DualBtring@d
$696M S550MBEE850M High-Very®High Asteroids/Comet | Flyby Coldiackup 3o Ofo® 641 400®0®90
6 Inner@Planetl Dual@tringB@
$1,123M S420MEEH2,600M None-Low (Mars) Rover Warmbbackup 3@olF0 6@olF0 1735 100001890
7 Orbiter/B| DualBtringRR
$2680M $2,300MEZ3,000M None-Low Outer@®lanets Flyby Warmbbackup 11R&ol2 4oB 978 65007300

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes
only. It does not constitute a commitment on the part of JPL and/or Caltech
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ASCoT Web Model:
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* Our research has demonstrated that for a well
defined domain that cluster based algorithms
can predict software development costs
within +/- 50% using a small number of system
level categorical parameters.
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Publications: Conference Publications: Journal
1. Empirical Software Engineering

2. |EEE Aerospace

— Improving and Expanding NASA Software Estimation — Negative results for software effort
Methods, 2016 Aerospace Conference, Big Sky, Mt., March 2016. Estimation, Empirical Software Engineering,
—  NASA Analogy Software Cost Model: A Web-Based Cost Analysis Nov 2016. Menzies, Yang, Mathew, Boehm,
Tool, , 2017 Aerospace Conference, Big Sky, Mt., March 2017. Hihn
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2015, Norman, Nebraska, Nov. 2015. Software Costing Tool, Goodbye Excel”, 2016 NASA Cost

Symposium, NASA Glen Research Center, August. 2016. J.
Hihn and J. Johnson

NASA Cost Symposium

1. International Cost Estimation and Analysis Association

(ICEAA) — NASA Software Cost Estimation Model: An Analogy Based
—  NASA Software Cost Estimation Model: An Analogy Based Estimation Method. 2015 NASA Cost Symposium, NASA
Estimation Method, 2015 International Cost Estimation and Ames Research Center, August 2015. J. Hihn and J. Johnson.

Analysis Association (ICEAA) Professional Development &

L . ; . — A Next Generation Software Cost Model: A look under the
Training Workshop, San Diego California, June 2015

Hood. 2014 NASA Cost Symposium, NASA Langley
— A Next Generation Software Cost Model, 2014 International Cost Research Center, August 2014. J. Hihn and J. Johnson.

Estimation and Analysis Association (ICEAA) Professional
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International Forum on COCOMO and System/Software Cost
Modeling,USC, October 2016. J. Hihn & M. Saing

— Just How Good is COCOMO and Parametric Estimation?, ,
29th International Forum on COCOMO and System/Software
Cost Modeling, USC, October 2014. Hihn et al.
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